Evaluating Feature Selection Methods for Multi-Label Text Classification

Newton Spolaôr¹, Grigorios Tsoumakas²

¹ Laboratory of Computational Intelligence, Institute of Mathematics & Computer Science University of São Paulo, São Carlos, Brazil

² Department of Informatics Aristotle University of Thessaloniki Thessaloniki 54124, Greece

Motivation

• Real word, exciting research problem on large-scale biomedical semantic indexing

• Can feature selection help?

Multi-Label Learning

• Multi-label data

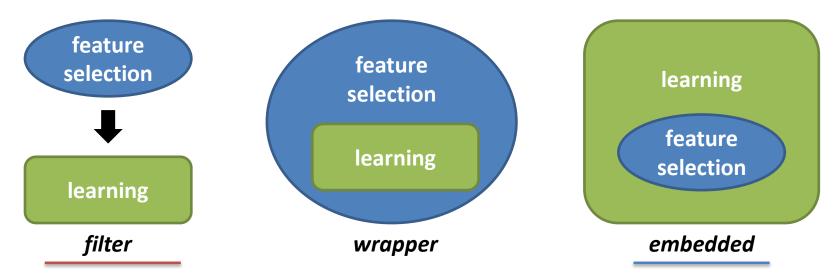
- Instances related with a subset of a finite label set

	Pain	Fever	•••	Weight	Disease
Patient 1	yes	no		101.5	{gastritis, duodenitis}
Patient 2	no	yes		61.2	{esophagitis}
:	:	:	•.	:	:
Patient M	yes	yes	•••	79.8	{esophagitis, gastritis, duodenitis}

- Models learned from such data can output
 - Bipartition of label set, ranking of labels, ranking of instances, marginal/joined probabilities

Feature Selection

- Main objectives
 - Reducing measurement & storage requirements, data understanding, reducing training & utilization times, improving prediction accuracy
- Three main categories of approaches



Multi-Label Filter Feature Selection

- Step 1: Feature ranking separately per label
 One can use any standard single-label feature evaluation measure for binary classification
- Step 2: Aggregation of the different rankings
 - Mean, Max of the evaluation score for all labels
 - Round Robin (RoR), Rand Robin (RaR) selection
 per label based on the evaluation scores

Example – Mean Aggregation

Feature	Score <i>Y</i> ₁	Score Y ₂	Score <i>Y</i> ₃	Mean	Ranking
<i>X</i> ₁	0.1	0.9	0.5	0.5	X_5
<i>X</i> ₂	0.6	0	0.3	0.3	<i>X</i> ₃
<i>X</i> ₃	0.5	0.7	0.6	0.6	<i>X</i> ₁
X_4	0.3	0.5	0.4	0.4	X_4
<i>X</i> ₅	0.7	0.6	0.8	0.7	<i>X</i> ₂

Example – Max Aggregation

Feature	Score <i>Y</i> ₁	Score Y ₂	Score <i>Y</i> ₃		Max	Ranking	Mean	
<i>X</i> ₁	0.1	0.9	0.5			0.9	X_1	X_5
<i>X</i> ₂	0.6	0	0.3		0.6	X_5	<i>X</i> ₃	
<i>X</i> ₃	0.5	0.7	0.6			0.7	<i>X</i> ₃	<i>X</i> ₁
X_4	0.3	0.5	0.4			0.5	<i>X</i> ₂	X_4
<i>X</i> ₅	0.7	0.6	0.8		0.8	X_4	<i>X</i> ₂	

Example – RoR Aggregation

	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	\downarrow
Feature	Score <i>Y</i> ₁	Score Y ₂	Score <i>Y</i> ₃
<i>X</i> ₁	0.1	0.9	0.5
<i>X</i> ₂	0.6	0	0.3
<i>X</i> ₃	0.5	0.7	0.6
X_4	0.3	0.5	0.4
X_5	0.7	0.6	0.8

Ranking
X_5
<i>X</i> ₁
<i>X</i> ₂
<i>X</i> ₃
X_4

Example – RaR Aggregation

	$\downarrow\downarrow\downarrow$	\downarrow	$\downarrow\downarrow\downarrow$
Feature	Score <i>Y</i> ₁	Score Y ₂	Score <i>Y</i> ₃
<i>X</i> ₁	0.1	0.9	0.5
<i>X</i> ₂	0.6	0	0.3
<i>X</i> ₃	0.5	0.7	0.6
X_4	0.3	0.5	0.4
<i>X</i> ₅	0.7	0.6	0.8
frequency	0.3	0.1	0.4

Ranking	RoR
<i>X</i> ₅	X_5
<i>X</i> ₃	X_1
<i>X</i> ₁	X_2
<i>X</i> ₂	X_3
X_4	X_4

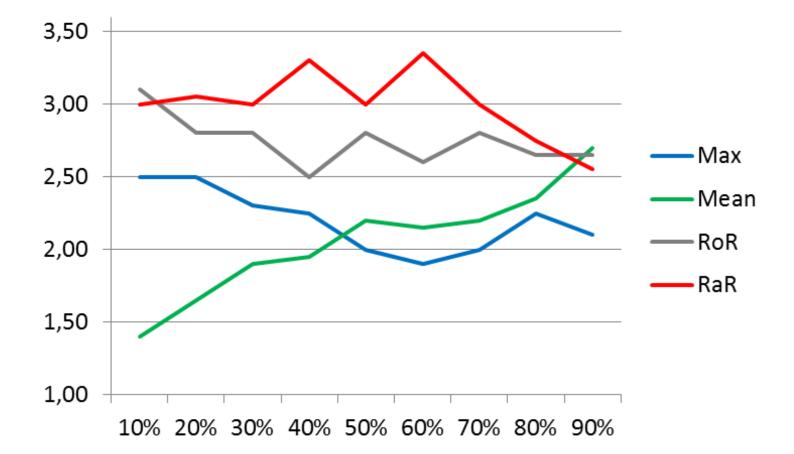
Experimental Setup (1/2)

- 20 benchmark textual datasets
 - yahoo (11), enron, delicious, bookmarks, bibtex, medical, tmc007, slashdot, language log, rcv1v2
- 8 filter feature selection methods
 - 2 feature evaluation measures (χ^2 , BNS)
 - 4 aggregation strategies (Mean, Max, RoR, RaR)
- 2 baselines

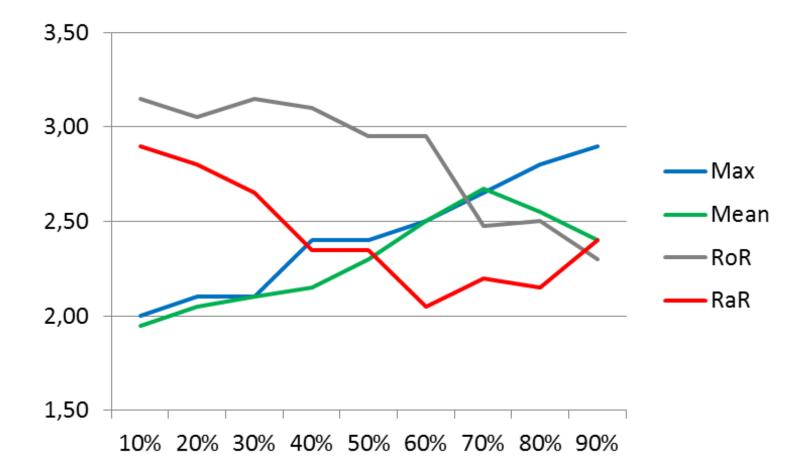
- random feature selection (RFS), all features (AF)

Experimental Setup (2/2)

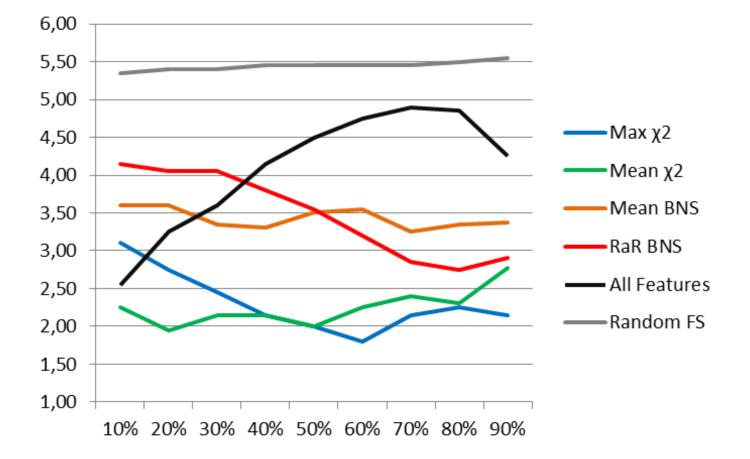
- Multi-label classification
 - Binary Relevance (*aka one-vs-rest*) with linear support vector machines as base algorithm
- Evaluation
 - Micro F-measure
 - Selection of 10%, 20%, ..., 90% features
 - Average ranking of methods across datasets



BNS Results



Best of χ^2 and BNS, Random, All



Recap

- Empirical study with large number of text datasets (20) in contrast with past literature
- Aggregations RaR and RoR tried for the first time here, but did not work successfully
- BNS is worse than χ^2 , contrary to findings for single-label data
- For χ^2 mean (max) aggregation should be preferred for low (high) percentage of features

Future Work

- Binary relevance + global feature selection
- Binary relevance + local feature selection
- Meta-labeler + global feature selection

 First results on BioASQ data are negative
 Will verify this on the 20 datasets of this study
- Meta-labeler + local feature selection
 Fails, as it renders the SVM scores incomparable
- Explore efficient ways to exploit label dependence in multi-label feature selection

The End

- Thank you for your attention!
- Contact
 - <u>newtonspolaor@gmail.com</u>
 - greg@csd.auth.gr
- Acknowledgement

 This research was partially supported by the São Paulo Research Foundation (FAPESP), grant 2012/23906-2

