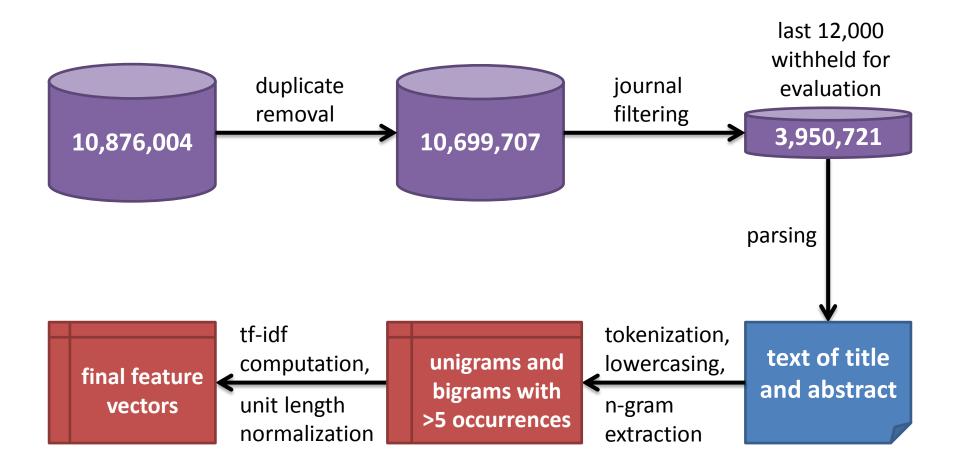
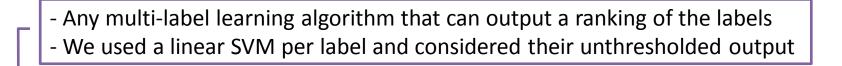
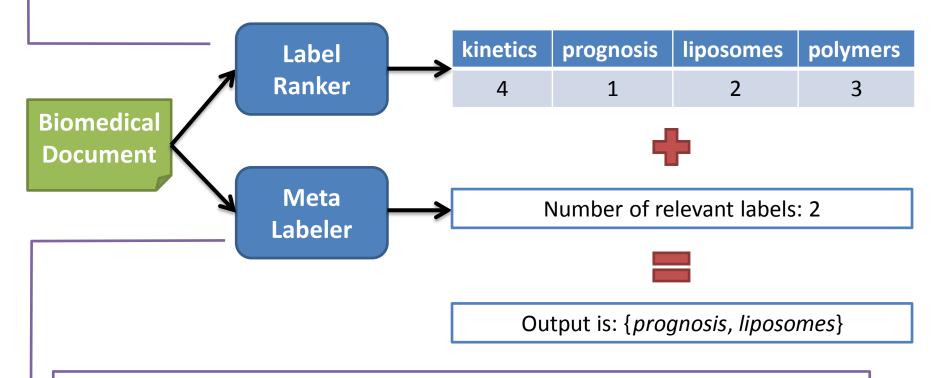
Large-Scale Semantic Indexing of Biomedical Publications at BioASQ

<u>Grigorios Tsoumakas</u>¹, Manos Laliotis^{2a}, Nikos Markantonatos^{2b}, Ioannis Vlahavas¹



¹ Department of Informatics Aristotle University of Thessaloniki Thessaloniki 54124, Greece


² Atypon,
 ^{2a} Santa Clara, CA 95054, USA
 ^{2b} Athens, 15341, Greece



Preprocessing

Meta-Labeler (Tang et al., WWW09)

Regression or (ordinal) classification using original features or label scores/ranks
We used linear SVM regression based on the original features

Tried But Failed

- Thresholding
 - SCut
- Class imbalance counterfeiting

 Majority under-sampling, asymmetric bagging
- Representations
 - Plain unigrams/bigrams, addition of trigrams
 - Bi-normal separation (BNS) scaling
- Hierarchy exploitation
 - Top-down approach

Our 4 Particular Systems

- Systems 1 and 3
 - Default meta-labelers as presented two slides ago
- System 2
 - Binary SVMs for some labels and meta-labeler for others, cyclically optimized on evaluation set
- System 4
 - Majority voting of 3 default meta-labelers

System	Publications	Unigrams	Bigrams	Labels
1	800,000	215,133	1,908,088	25,625
2,3	700,000	197,590	1,720,818	25,509
4	500,000 x 3	138,196±30	1,097,465±188	25,214±1.4

Time and Space

- Hardware
 - 4 10-core processors at 2.26 GHz, 1 Tb RAM and
 2.4 Tb storage (6 x 600 Gb SAS 10k disks in RAID 5)
- Parallel learning/use of binary SVMs
 - Using 40 threads of a 4 10-core processor system at 2.26 GHz, training took a couple of days, while prediction took a couple of hours
- Serialization
 - Required to respond within the 16h limit
 - Storing the models of system 1 required 406 Gb

Results

- System 1 topped F-measure
 - Best in Micro and Lowest Common Ancestor (LCA)
 F-measure from its introduction in c2w4 till c3w5
 - Micro F-measure: ~0.57, LCA F-measure: ~0.48
- System 2 generally worse than System 3
 - Need to reconsider selection of models per label
 - Binary SVMs better especially in frequent labels
- System 4 topped precision
 - 0.83 (example-based), 0.82/0.76 (micro/macro)
 - 0.91 (hierarchical), 0.56 (LCA)

Open Issues

- Considering the temporal dimension of data
 - Frequency of labels varies over time
 - Can techniques for handling concept drift help?
- Considering journal information
 - E.g. using journal title as text
- Handling title and abstract text separately

 Zoning, different vocabularies

BioASQ Workshop, 27 September 2013, Valencia, Spain

Large-Scale Semantic Indexing of Biomedical Publications at BioASQ

<u>Grigorios Tsoumakas¹</u>, Manos Laliotis^{2a}, Nikos Markantonatos^{2b}, Ioannis Vlahavas¹

¹ Department of Informatics Aristotle University of Thessaloniki Thessaloniki 54124, Greece ² Atypon,
 ^{2a} Santa Clara, CA 95054, USA
 ^{2b} Athens, 15341, Greece

