Our systems HACE Rebayct

Our participation Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work

Two hierarchical text categorization approaches for BioASQ semantic indexing challenge

Francisco J. Ribadas Víctor M. Darriba Luis M. de Campos Alfonso E. Romero

Compilers and Languages Group

Universidade de Vigo (Spain) http://www.grupocole.org/

> ribadas@uvigo.es darriba@uvigo.es

Research Group of Uncertainty Treatment in Artificial Intelligence

Universidad de Granada (Spain) http://decsai.ugr.es/gte/

lci@decsai.ugr.es
aeromero@cs.rhul.ac.uk

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

BioASQ challenge 2013

Valencia, September 2013

Our systems HACE Rebayct

Our participation Adaptations Preprocessing

Conclusions

Conclusions Future work

🚺 Mo

Motivation and objectives

- Description of our systems
 - HACE framework
 - Rebayct

Our participation in BioASQ

- Adaptations
- Preprocessing
- Tested configurations

Conclusions and future work

- Conclusions
- Future work

Motivation

Objectives

- Our systems HACE Rebayct
- Our participation Adaptations Preprocessing
- Conclusions
- Conclusions Future work

- Joint work of CoLe group (Univ. of Vigo) and UTAI group (Univ. of Granada)
- Previous independent work on related small/medium size problems
 - Legal documents: { parliamentary initiatives (UTAI) public grants and subsidies (CoLe)
 - Medium size thesauri (EUROVOC + custom thesaurus)
 - Both dealing with Spanish texts (also Galician for CoLe)
 - Minimal linguistic processing (no tagging, no lemmatization, no NER)
- Thesarus topic assigment as a hierarchical text categorization problem
 - Top-down scheme using a local classifier per node approach (CoLe)
 - Bayesian network induced from thesaurus hierarchy (UTAI)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Objectives

- Our systems HACE Rebayct
- Our participation Adaptations Preprocessing Configurations
- Conclusions
- Conclusions Future work

- Test the scalability of our proposals with large real-world data
 - BioASQ Task 1A: Large-Scale Online Biomedical Semantic Indexing
 - $\bullet\,$ Large hierarchy of descriptors and large training set $\to\,$ size and time restrictions
- 2 Evaluate the suitability of a pure text categorization approach for semantic indexing with MeSH \rightarrow minimal linguistic processing
 - $\bullet~$ Very different domain \rightarrow complex terminology

Origins of our systems

Objectives

Our systems HACE Rebayct

Our participatio

Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work

HACE framework

Text categorization on a public grants/subsidies collection

- Small size custom thesaurus (≈ 1800 descriptors)
- Medium/large size documents
- A few labeling inconsistence in training documents
- Additional requirement: return "many" results (search for a high recall)
 - Human curators will postprocess system output

Rebayct

Text categorization on a parliamentary initiatives collection

- EUROVOC thesaurus (≈ 4000 descriptors)
- Very small size documents (1-2 paragraphs)
- Additional requirement: return "many" results (search for a high recall)
 - Human curators will postprocess system output

HACE framework (I)

Objectives

Our systems HACE Rebayct

Our participation Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work Generic framework for hierarchical categorization (under development)

Top-down Local Classifier per Node Approach

- Local binary classifier trained for each node in the hierarchy
- Is current node (or its descendants) pertinent as label?
- Pachinko-like top-down traversal of local classifiers

Able to deal with tree and DAG structured taxonomies Plug-in architecture with several components for:

- selecting sets of positive examples with a bottom-up procedure
- selecting sets of negative examples
- feature selection at each local model (IG, Chi squared, ...)
- classification algorithm to perform the "routing" decisions at each local model
- dealing with unbalanced classes (weighting, boundary negative examples, split negative example set in an ensemble of classifiers)

HACE framework (II)

Objectives

Our systems HACE Rebayct

Our

Adaptations Preprocessing

Conclusions

Conclusions Future work Specific features for large scale hierarchical text categorization

- Textual features computation backed by a Lucene index
- Bottom-up positive example selection (from positive examples sets in descendant nodes)
 - avoid unmanageable training sets on top levels
 - random selection among descendant positive examples
 - k-means clustering based selection → selecting examples close to centroids
- Guided top-down search using a simplified *k*-nearest neighbours
 - query the Lucene index to get a set of promising labels from most similar documents
 - top-down search starts at grandparents nodes \rightarrow avoids premature discard of useful paths

HACE framework (III)

HACE

Contextual routing decisions (not tested in BioASQ data)

- Objective: try to reduce false negatives (mainly in top levels)
- Two classifier per node model { content based context based

- Exploiting bottom-up information (*metafeatures*) coming from content based routing decisions performed by descendant nodes (and optionally by ancestor and sibling nodes)
- Roughly inspired by classifier chain approaches in multilabel classification
 - Adds to content based features a set of metafeatures about decisions of surrounding models
- Moderate performance improvements + high training/classification cost

Rebayct (I)

Objectives

- Our systems HACE Rebayct
- Our participation Adaptations Preprocessing Configurations
- Conclusions Conclusions Future work

- Builds a Bayesian network using:
 - thesaurus hierarchical structure
 - terms (tokens) taken from { descriptor labels non-descriptor labels
 - Iterms (tokens) taken from training documents

Elements

- Concept nodes (representing thesaurus concepts/nodes)
- Descriptor and Non-Descriptor nodes (representing descriptor and non descriptor labels)
- Term nodes (representing words [tokens])
- Every concept node C linked with three virtual nodes
 - H_C: info. from BT (Broader Term) relationships in the thesaurus
 - E_C: info. from descriptor and non-descriptor labels (synonymy)
 - T_C: info. from training documents

Efficient OR-gate model to define conditional probabilities.

Rebayct (II)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Objectives

Our systems HACE Rebayct

Our participation Adaptations Preprocessing

Conclusions

Conclusions Future work

Thesaurus fragment (D: descriptors, ND: non-descriptors)

Rebayct (II)

・ コット (雪) (小田) (コット 日)

Objectives

Our systems HACE Rebayct

Our participation Adaptations

Configurations

Conclusions

Conclusions Future work

Bayesian network build from thesaurus hierarchy and descriptor and non-descriptor equivalence relationships

Rebayct (II)

イロン 不得 とくほ とくほ とうほ

Objectives

Our systems HACE Rebayct

Our participation

Adaptations Preprocessing

Configurations

Conclusions

Conclusions Future work

Bayesian network after adding terms from training documents

Our systems HACE Rebayct

Our participation

Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work

Adaptations for BioASQ challenge

Own concept taxonomy with a DAG structure extracted from 2013 XML version of MeSH

- Hierarchical relationships created from *TreeNumber* elements
- *TreeNumbers* describe the places a MeSH descriptor occupies inside the 16 concept taxonomies

Results

- DAG with 26,702 nodes (excludes 151 descriptors from subhierarchy V)
- 36,647 parent-child relationship with only two cycles
 - descriptors D009014 (Morals) + D004989 (Ethics)
 - descriptors D006885 (Hydroxybutyrates) + D020155 (3-Hydroxybutyric Acid)
- 108,117 related terms (synonyms or lexical variants) [non-descriptors for Rebayct]

Our systems HACE Rebayct

Our participatio

Adaptations

Preprocessing Configurations

Conclusions

Conclusions Future work

Problem: spurious relationships in the final DAG taxonomy

Example: eye as { part of face a sense organ } leads to consider eyebrows as an element of a sense organ

Body Regions:A01 Head: A01.456 Ear: A01.456.313 Face: A01.456.505 Cheek: A01.456.505.173 Chin: A01, 456, 505, 259 Eve: A01.456.505.420 Eyebrows; A01.456.505.420.338 Evelids: A01.456.505.420.504 Evelashes: A01.456.505.420.504.421 Forehead: A01, 456, 505, 580 Mouth: A01.456.505.631 Lip;A01.456.505.631.515 Nasolabial Fold:A01.456.505.682 Nose: A01.456.505.733 Parotid Region; A01.456.505.750 Scalp;A01.456.810

Sense Organs:A09 Ear: A09.246 (44 descendants) Eve: A09.371 Anterior Eye Segment; A09.371.060 (20 descendants) Anterior Capsule of the Lens; A09.371.061 Axial Length, Eye; A09.371.199 Eyelids; A09.371.337 Conjunctiva: A09.371.337.168 Evelashes: A09.371.337.338 Meibomian Glands: A09.371.337.614 Lacrimal Apparatus: A09.371.463 Retina: A09.371.729 (21 descendants) Sclera: A09.371.784 Tenon Capsule:A09.371.839 Uvea: A09.371.894 (6 descendants) Nose:A09.531

No disambiguation info. on training data to avoid it

Our systems HACE Rebayct

Our participatio

Preprocessing Configurations

Conclusions Conclusions

Preprocessing for BioASQ challenge

Only elementary text processing on train and validation documents.

- stop-word removal using a standard English stop-word list
- default English stemmer from the Snowball project
 Also: alternative collection extracting word bigrams from
 descriptor labels and document text after stop-word removal
 - simple way to capture some complex terms (but far from perfect)

Rebayct scalability limitations

- Extract a reduced training set of 1,242,670 documents (10%)
- \approx 50 more representative documents for every descriptor taken from Lucene index
- Split into 5 groups (248.534 training instances) to train - ...

Tested configurations (I)

Objectives

- Our systems HACE Rebayct
- Our participatio
- Adaptations
- Configurations

Conclusions

Conclusions Future work

HACE framework

Previous parameter tunning phase with a small dataset from subhierarchy "[C] Diseases"

- Effectiveness of bottom-up positive example selection
 - random document selection vs. k-means based document selection
 - up to 500, 1000 and 2000 selected instances per node
- 2 Effectiveness of guided top-down classification
- Usefulness of word bigram based features vs. single token features

Results

• *k*-means based document selection has better performance, but training time is almost twice

- better results using greater amounts of positive instances
- guided top-down search improved classification time and quality
- word bigrams did not appear to help

Our system HACE Rebayct

Our participation Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work

Tested configurations (II)

Rebayct

- Effectiveness of aggregating the results of 5 models vs. single model performance
- Usefulness of word bigrams as instance features using a single Rebayct model

Conclusions

- marginal improvements when results of 5 Rebayct models were combined
- great improvement due to word bigram representation

BioASQ Task 1A participation

Objectives

Our system: HACE Rebayct

Our participation Adaptations Preprocessing

Configurations

Conclusions

Conclusions Future work

Submitted configurations

• HACE1: HACE framework with

- *k*-means bottom-up positive example selection (2000 documents per node)
- IG as local feature selection (100 features)
- SVM as local content based classifier
- HACE2: same as HACE1 employing a guided top-down search approach
- HACE2-NE: same as HACE2 using word bigrams as textual features
- REBAYCT: combination of 5 Rebayct models trained with 5 splits of the reduced training set
- REBAYCT2: single Rebayct model using word bigram alternative collection

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Objectives

- Our systems HACE Rebayct
- Our participation Adaptations Preprocessing Configurations

Conclusions

Conclusions Future work

- Two different hierarchical text categorization systems evaluated in 2013 BioASQ challenge
- Quite far from top performance systems in the challenge, but some improvements were done from the original systems employed in first batch
- With minor changes our systems were able to deal with a problem larger than the ones that originated them
- Tested configurations and BioASQ challenge results give us some insights for improvement
- Large training data sets make unnecessary to employ sophisticated machine learning approaches?
 - Training text contribution in Rebayct classifications was more important than structural and descriptor label contributions
 - Guided top-down search in HACE employs a very simple kind of *k*-nn prefiltering.

Future work

Objectives

- Our systems HACE Rebayct
- Our participation Adaptations Preprocessing Configurations
- Conclusions
- Conclusions

 Advanced NLP processing of documents and descriptor labels (POS tagging, NER, ...)

HACE framework

- Make a more deep parameter tunning
- Exploit the guided top-down search approach
- Exploit (and optimize) the context based "routing" approach

Rebayct

- Evolve to a sort of active learning approach with better training document selection
- Exploit word bigrams and powerful text processing approaches to improve quality of input data