

BioASQ

A challenge on large-scale biomedical semantic indexing and question answering

George Paliouras and Anastasia Krithara

NCSR "D"

27th September 2013

BioASQ Workshop, Valencia

Intelligent Information Management Targeted Competition Framework ICT-2011.4.4(d)

Outline

Introduction

Presentation of the challenge

Task 1A

Task 1B

Conclusions and Perspectives

Social Network

Stay Tuned!

Panel Discussion

Introduction What is BioASO

A competition funded by the European Union (FP7)

- BioASQ initiates a series of challenges on biomedical semantic indexing and question answering (QA).
- Participants are required to index semantically content form large-scale biomedical resources (e.g. MEDLINE) and/or
- to assemble data from multiple heterogeneous sources (e.g. scientific articles, knowledge bases, databases)
- to compose informative answers to biomedical natural language questions.

Introduction

What is BioASQ

Some facts

- ► The challenge runs twice, in **two cycles** (two years).
- 1st cycle completed.
- 2nd cycle starts March 2014.
- ▶ Participation can be partial (any task, subtask, response type).
- Prizes for each task/subtask.
- BioASQ datasets, infrastructure, evaluation services etc. available beyond the end of the project.
- Advisory board: both academia and industry
 - NLM, NIST, CMU, IBM, MSR etc.

Presentation of the challenge

Tasks

Task A: Hierarchical text classification

- Organizers distribute new unclassfied PubMed articles.
- Participants assign MeSH terms to the articles.
- Evaluation based on annotations of PubMed curators.

Task B: IR, QA, summarization

- Organizers distribute English biomedical questions.
- Participants provide:relevant articles, snippets, concepts, triples, exact answers, summary answers.
- Evaluation: both automatic (GMAP, MRR, Rouge etc.) and manual (by biomedical experts).

Presentation of the challenge

Resources

Criteria for selecting the resources

- Publicly available
- Coverage of different biomedical subfields
- Widely acceptable and usable format (e.g. OWL, OBO)
- Low degree of overlap between them

Selected resources

- Data sources include both text and structured info:
 - Task 1a: Medline articles and MeSH
 - ► Task 1b:
 - PubMed abstracts and PubMed Central articles
 - Gene Ontology, UniProt, Jochem, Disease Ontology

Presentation of the challenge

What makes **BioASQ** more challenging:

LARGE SCALE data and knowledge sources

REAL questions and answers

of many different types

created by bio-medical experts

Task 1A

Hierarchical text classification

Basic statistics about the training data

PubMed Abstracts	10,876,004
Unique labels	26,563
Labels per article	12.55
Size in GB	22

Number of articles for each test dataset in each batch.

Week	Batch 1	Batch 2	Batch 3
1	1,942 (1,532)	5,012 (1,466)	7,650 (1,974)
2	845 (681)	5,590 (1,604)	10,233 (2,777)
3	793 (694)	7,349 (1,968)	8,861 (2.179)
4	2,408 (585)	4,674 (1,433)	1986 (1,069)
5	6,742 (3,194)	8,254 (2,428)	1750 (885)
6	4,556 (1,703)	8,626 (2,194)	1357 (506)
Total	17,286 (8,389)	39,505 (11,093)	31,837 (9,390)

Task 1A Evaluation Measures

Flat measures

- Accuracy (Acc.)
- Example Based Precision (EBP)
- Example Based Recall (EBR)
- Example Based F-Measure (EBF)
- Macro Precision/Recall/F-Measure (MaP. MaR.MaF)
- Micro Precision/Recall/F-Measure (MiP,MIR,MiF)

Hierarchical measures

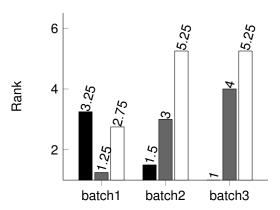
- Hierarchical Precision (HiP)
- Hierarchical Recall (HiR)
- ► Hierarchical F-Measure (HiF)
- Lowest Common Ancestor Precision (LCA-P)
- ► Lowest Common Ancestor Recall (LCA-R)
- Lowest Common Ancestor F-meData statistics for Task 1aasure (LCA-F)

*A. Kosmopoulos, I. Partalas, E. Gaussier, G. Paliouras and I. Androutsopoulos: Evaluation Measures for Hierarchical Classification: a unified view and novel approaches

Task 1A

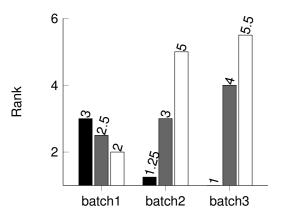
Participants

Baselines:


- BioASQ baseline (basic unsupervised system)
- MTI default (as used by curators)
- MTI First Line Index (biased on precision)

46 systems (11 teams):

- Mayo Clinic, USA
- University of Alberta, CANADA
- Aristotle University of Thessaloniki, GREECE
- University of Vigo, SPAIN
- University of Colorado, USA
- NCBI, NLM, USA
- Universite de Rouen, FRANCE
- Fudan University, CHINA
- UCSD, USA
- Toyota Technological Institute, JAPAN
- Imran, PAKISTAN



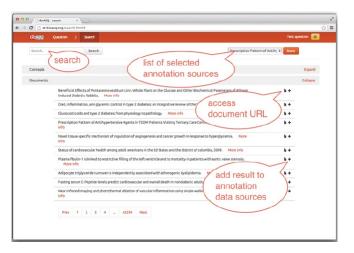
Task 1A Results- MiF

Task 1A Results - LCA-F

Task 1B IR, QA, summarization

Dataset

- 311 Questions and gold reference answers prepared by biomedical experts from around Europe.
 - Using tools/infrastructure developed by BioASQ.
- Four categories of questions:
 - Yes/No questions (both exact and ideal answer)
 - Factoids questions (both exact and ideal answer)
 - List questions (both exact and ideal answer)
 - Summary questions (ideal answer)


Task 1B

Examples of the different types of questions

- Yes/No question: Is intense physical activity associated with longevity?
- ► Factoids question: Which is the protein (antigen) targeted by anti-Vel antibodies in the Vel blood group?
- ► List question: List the endoscopic diagnoses that have been reported in children with autism.
- ▶ **Summary question:** What is the role of thyroid hormone receptor alpha1 in insulin secretion?

Task 1B

Annotation tool for the creation of the data for QA

Task 1B IR, QA, summarization

Basic statistics of the training and test data

	Training data	Test set 1	Test set 2	Test set 3
Questions	29	100	100	82
Yes/No	8	25	26	26
Factoid	5	18	20	16
List	8	31	31	23
Summary	8	26	23	17
Avg #concepts	4.8	5.3	6.0	5.4
Avg #documents	10.3	11.4	12.1	12.9
Avg #snippets	14.0	17.1	17.4	15.97

Task 1B

Evaluation measures

Evaluating Phase A (IR)

Retrieved items	Unordered retrieval measures	Ordered retrieval measures	
concepts		MAP, GMAP	
articles	mean Precision, Recall, F-Measure		
snippets	mean Precision, Recall, F-Measure		
triples			

Evaluating the 'exact' answers for Phase B (Traditional QA)

Question type	Participant response	Evaluation measures
yes/no	'yes' or 'no'	Accuracy
factoid	up to 5 entity names	strict and lenient accuracy, MRR
list	a list of entity names	mean Precision, Recall, F-measure

▶ Evaluating the 'ideal' answers for Phase B (Query-focused Summarization)

Question type	Participant response	Evaluation measures
any	paragraph-sized text	ROUGE-2, ROUGE-SU4, manual scores*
		(Readability, Recall, Precision, Repetition)

^{*}with the help of BioASQ Assessment tool.

Task 1B

Participating systems

Phase A

- Baselines:
 - Top 50/100 baseline
- 4 systems (2 teams):
 - Mayo Clinic, USA
 - University of Alberta, CANADA

Phase B

- Baselines:
 - BioASQ Baseline/ BioASQ Baseline 2
- 7 systems (2 teams):
 - University of Alberta, CANADA
 - Toyota Technological Institute, JAPAN

Task 1B Statistics

Participation for Phases A and B of task 1B:

		Systems		Us	ers
	Size	Phase A	Phase B	Phase A	Phase B
Batch 1	100	3	4	2	2
Batch 2	100	4	5	2	2
Batch 3	82	2	3	1	1

Exact Answers (Yes/No) - Accuracy

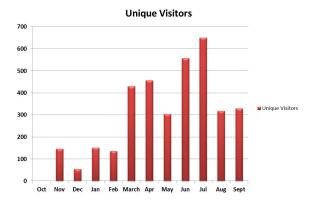
System	Batch1	Batch2	Batch3
Wishart-S2	0.92	0.96	-
Baseline2	0.48	0.50	0.61
Baseline1	0.44	0.26	0.56
TRG	0.32	0.42	0.57
TRG2	-	0.42	0.57
TRG3	-	0.42	0.57

Exact Answers (List) - Mean F-measure

System	Batch1	Batch2	Batch3
Wishart-S2	0.23	0.33	-
Baseline2	0.02	0.08	0.03
Baseline1	0.02	0.08	0.03
TRG	0.0066	0.07	0.07
TRG2	-	0.04	0.06
TRG3	-	0.05	0.05

Exact Answers (Factoid) - MRR

System	Batch1	Batch2	Batch3
Wishart-S	0.31	0.30	-
Baseline2	0.10	0.07	0.04
Baseline1	0.02	0.08	0.04
TRG	0.03	0.03	0.03
TRG2	-	0.03	0.03
TRG3	-	0.04	0.03


Ideal Answers

System	Batch1	Batch2	Batch3
Wishart-S	3.945	4.232	-
TRG	3.352	3.397	3.132
TRG-2	-	3.342	3.075
TRG-3	-	3.340	2.987
Baseline1	2.862	-	3.195
Baseline2	2.732	-	3.175

Conclusions and Perspectives

Overall participation in BioASQ

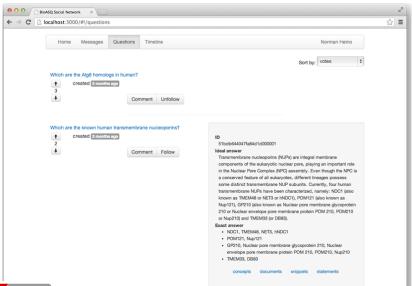
- ▶ 117 registered users in BioASQ platform
- 73 systems registered, 46 different systems have submitted results for task 1A
- BioASQ website statistics:

Conclusions and Perspectives

What we've learnt

Main conclusions

- Both tasks are challenging and interesting.
- ▶ It is difficult for humans to provide all required golden truth.
- Manual assessment and improvement of the data was necessary in task 1b.
- Evaluation is an open issue in both tasks.
- Satisfactory participation in the first year.


Goals and perspectives

- Aim to increase participation in the second year.
- Continue after the end of the project:
 - Task 1a continues running in non-challenge mode.
 - Oracle for continuous testing to be announced soon.
 - Social network for data creation and challenge set-up.

Social Network

Social network to help extend data, and set up new challenges

Stay Tuned! BioASQ project

Visit www.bioasq.org Follow @BioASQ

Please fill in the workshop survey http://goo.gl/ncjzUH

Evaluation infrastructure & Start of the challenge Challenge Challenge Story-run data

February 2014 March 2014 May 2014 September 2014

Panel Discussion

BioASQ challenge next year and beyond the end of project

- Evaluation measures: Which work best and how do we combine them?
- 2. What's the role of Semantic Indexing in QA?
- 3. Dissemination. How do we achieve:
 - 3.1 A better relation to other challenges such as BioNLP and BioCreative
 - 3.2 An increased participation
- 4. Would an oracle or open datasets be helpful? (What's the best evaluation format for QA? Online? Offline?)