Base systems HACE Rebayct

Our participatio

Document preprocessing Combining ensembles

Results

Conclusions

CoLe and UTAI participation at the 2014 BioASQ semantic indexing challenge

Francisco J. Ribadas Victor M. Darriba

Compilers and Languages Group

Universidade de Vigo (Spain) http://www.grupocole.org/

> ribadas@uvigo.es darriba@uvigo.es

Luis M. de Campos Alfonso E. Romero

Research Group of Uncertainty Treatment in Artificial Intelligence

Universidad de Granada (Spain) http://decsai.ugr.es/gte/

lci@decsai.ugr.es
aeromero@cs.rhul.ac.uk

BioASQ challenge 2014

QA-CLEF 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sheffield, September 2014

Motivation and objectives

Description of base systems 2

- HACE framework
- REBAYCT

Our participation at BioASQ 2014

- Document preprocessing
- Combining ensembles of classification models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results and conclusions

Conclusions

Motivation and objectives

Objectives

Base systems HACE Rebayct

Our participatio

Document preprocessing Combining ensembles

Results

Conclusions

Second participation at BioASQ semantic indexing challenge (**task 2A**)

• joint work of CoLe group (Univ. Vigo) and UTAI group (Univ. Granada)

Thesarus topic assignment as a hierarchical text categorization problem

- top-down scheme with local classifier per node approach (CoLe)
- Bayesian network induced from thesaurus hierarchy (UTAI)

Objectives in 2nd BioASQ challenge

Same base systems, try to improve document preprocessing and label postprocessing

- test more powerful linguistic processing on input documents
- evaluate strategies to combine ensembles of classification models

HACE framework (I)

Objectives

Base systems HACE Rebayct

Our participation

Document preprocessing Combining ensembles

Results

Conclusions

Generic framework for hierarchical categorization able to deal with tree and DAG structured taxonomies

Top-down Local Classifier per Node Approach

- Iocal binary classifier trained for each node in the hierarchy
- is current node (or its descendants) pertinent as label?
- pachinko-like top-down traversal of local classifiers

Plug-in architecture with several components for:

- selecting sets of positive examples with a bottom-up procedure
- selecting sets of negative examples
- feature selection at each local model
- classification algorithm to perform "routing" decisions at each local model
- dealing with imbalanced classes

HACE framework (II)

Objectives

Base systems HACE Rebayct

Our participatio

Document preprocessing Combining ensembles

Results

Conclusions

Specific features for large scale hierarchical text categorization

- textual features computation backed by a Lucene index
- bottom-up positive example selection (from sets of positive examples at descendant nodes)
- guided top-down search using a simplified k-nearest neighbours
 - query the Lucene index to get a set of promising labels from most similar documents
 - $\bullet~$ top-down search starts at grandparents nodes \rightarrow avoids premature discard of useful paths

In both BioASQ editions we have employed a fairly aggressive configuration for term and document selection

- our main aim with this framework is to be able to train local models in memory using
 - small sets of highly descriptive terms
 - small positive documents sets representing current node descendants

REBAYCT (I)

(ロ) (同) (三) (三) (三) (○) (○)

Objectives

Base systems HACE Rebayct

Our participation

Document preprocessing Combining ensembles

Results

Conclusions

- Builds a Bayesian network using:
 - thesaurus hierarchical structure

 - lerms (tokens) taken from training documents

Elements

- Concept nodes (representing thesaurus concepts/nodes)
- Descriptor and Non-Descriptor nodes (representing descriptor and non descriptor labels)
- Term nodes (representing words [tokens])

Every concept node C linked with three virtual nodes

- H_C: info. from BT (Broader Term) relationships in the thesaurus
- *E_C*: info. from descriptor and non-descriptor labels (synonymy)
- T_C: info. from training documents

Rebayct (II)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Objectives

Base systems HACE Rebayct

Our participation

Document preprocessing Combining ensembles

Results

Conclusions

Bayesian network after adding terms from training documents

Document preprocessing

- Objectives
- Base systems HACE Rebayct

Our participatior

Document preprocessing

Combining ensembles

Results

Conclusions

- Previous BioASQ participation: simple document preprocessing (stop-word removal + stemming)
- Complex domain (specific language + rich terminology) suggest the suitability of employing sophisticated linguistic processing
- Balance huge categorization task *vs.* NLP processing cost and complexity
- **Our approach:** approximate powerful NLP processing using cheaper approaches
 - local abbreviation expansion
 - 2 term selection based on morphosyntactic information
 - 3 approximate multiword terms with selected bigrams

Base systems HACE Rebayct

Our participation

Document preprocessing

Combining ensembles

Results

Conclusions

Expanding local abbreviations

• High writing quality in BioASQ collection documents

- MEDLINE abstracts written and reviewed by experts
- consistent usage of a set of well established conventions for scientific writing
- Use of abbreviations and acronyms with local meaning within a paper
 - fairly simple and easy to detect patterns of use
 - usually closely related with paper main contents

Schwartz and Hearst algorithm

(http://biotext.berkeley.edu/software.html)

- authors report report 96 % precision and 82 % recall in custom MEDLINE evaluation set
- in our preprocessing phase abbreviation expansion in 10.1 % of processed documents (from 4.8 M docs. in training set B)

short form	long form	
IFP	inflammatory fibroid polyps	5 occurrences within the abstract
ACTH	adrenocorticotropic hormone	5 occurrences within the abstract
PEM	protein energy malnutrition	2 occurrences within the abstract
QoL	<i>quality of life</i> ^(*) (*) An actual MeSH descriptor (14 occurrences within the abstract ID D011788, tree number F01,829,458)

Base systems HACE Rebayct

Our participatio

Document preprocessing

Combining ensembles

Results

Conclusions

Morphosyntactic processing

- Initial aim: test the suitability of complex linguistic processing (dependence parsing, NER, ...)
- Final experiments employed only simple NLP tools
 - dealing with morphosyntactic variation using a lemmatizer to identify lexical roots
 - stop-word removal replaced by a content-word selection based on part-of-speech (PoS) tags
- Linguistic analysis using ClearNLP toolset

(http://clearnlp.wikispaces.com/)

- provides dictionaries and trained PoS tagging models built from medical corpora
- PoS tags to filter content-words: *Noum*, *Verb*, *Adjective*, *Unknown word*.

Document preprocessing

Bigram association measures

- Use of word bigrams gave us some performance improvement in our first BioASQ participation
 - but it increases memory and time requirements both in training and labeling
- Basic premise: in complex domains multiword terms usually provide higher discriminative power than the simple terms that constitute them
- Our approach: identify approximately multiword terms without deep natural language analysis
 - compute association measures on bigrams taken from filtered and normalized tokens
 - Mutual Information using Ngram Statistics Package (http://ngram.sourceforge.net/)
 - top ranked bigrams could be considered as multiword collocations

Some examples of top bigrams:

escherichia coli amino acids gamma globulin quinea pig

electron microscopy cell wall staphylococcus aureus deoxyribonucleic acid ribonucleic acid

molecular weight electron microscope amino acid ・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Base systems HACE Rebayct

Our participation

Document preprocessing

Combining ensembles

Results

Conclusions

Combining ensembles of classification models

- **Basic idea:** mixing label proposals coming from an "expert committee" of models could improve the overall quality of the individual predictions
- Tested strategies:
 - build a model for each MeSH subhierarchy
 - 2 build several models ensuring maximum diversity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Base systems HACE Rebayct

Our

Document preprocessing

Combining ensembles

Results

Conclusions

Model per subhierarchy approach (I)

- MeSH thesaurus can be arranged into 16 overlaping subhierarchies according to the *TreeNumber* list attached to every MeSH descriptor
 - replicating common subtrees those subhierarchies can be assumed to be independent

	# of		# of
subhierarchy	desc.	subhierarchy	desc.
(A) Anatomy	2,927	 Anthropology, Education, 	651
(B) Organisms	5,196	Sociology and Social Phenomena	
(C) Diseases	11,303	(J) Technology and Food	601
(D) Chemicals and Drugs	20,992	and Beverages	
(E) Analytical, Diagnostic and	4,764	(K) Humanities	218
Therapeutic Techniques		(L) Information Science	519
and Equipment		(M) Persons	258
(F) Psychiatry and Psychology	1,150	(N) Health Care	2,350
(G) Biological Sciences	3,428	(V) Publication Characteristics	188
(H) Physical Sciences	513	(Z) Geographic Locations	553

 The categorization task in the BioASQ challenge can be splitted across a set of partial models specialized in each one of the MeSH subhierarchies

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Combining ensembles

Model per subhierarchy approach (II)

Oritical points: when labeling a given document ...

- ... which partial models should be checked?
- ... how many descriptor labels should be taken from each submodel prediction?
- 3 ... how those predicted labels should be ranked?

• Our approach: k-nn based voting scheme

- a Lucene index is queried to select the top k similar documents
- candidate subhierarchies are identified from label assignment in those documents
- doc. similarity scores are averaged to assign a weight to each subhierarchy

• voting scores determine: submodels to be checked number of top predicted descriptors to be retrieved weights to be employed in final ranking

(ロ) (同) (三) (三) (三) (○) (○)

- Only REBAYCT can take advantage of this method
 - HACE implicitly performs an equivalent decision during first stages of document labeling.

Base systems HACE Rebayct

Our

Document preprocessing

Combining ensembles

Results

Conclusions

Introducing diversity into the trained models

- REBAYCT limitations led to employ a bagging based ensemble in first BioASQ challenge
 - small performance improvement due to combination of several REBAYCT models
 - inspection of partial results showed a high coincidence level among top predicted labels
- Our objective: ensure more diversity into the ensemble submodels
- Iterative submodel generation (boosting inspired)
 - starts with a REBAYCT model built only from thesaurus structure (with no training documents)
 - training docs. where current model performance is poor (threshold on F-meaure) are retained as "interesting" cases to train next model
 - training docs. where performance is acceptable are not taken into account to train next model
 - once enough "interesting" cases are available, current REBAYCT model is updated using them
 - test performance
 - ${\color{black} \bullet}$ new model better than current model \rightarrow continue
 - new model worse than current model \rightarrow retain current model + restart iteration

BioASQ Task 2A participation

Objectives

Base systems HACE Rebayct

Our

Document preprocessing Combining ensembles

Results

Conclusions

Submitted configurations

- HACE1: HACE framework with
 - *k*-means bottom-up positive example selection (up to 5000 documents per node)
 - IG as local feature selection (up to 500 top ranked features)
 - SVM as local content based classifier
 - guided top-down search approach
 - bigrams from the top 1 % of the ranked list of word bigrams
- HACE2: same configuration as hace1 without using the guided top-down search approach
- HACE2-NE: same configuration as hace1 using the top 5 % of the ranked list of word bigrams.
- REBAYCT: 15 REBAYCT models using model per subhierachy approach
 - bigrams from the top 1 % of the ranked list of word bigrams
- REBAYCT2: 20 REBAYCT models using iterative submodel generation approach
 - bigrams from the top 1 % of the ranked list of word bigrams

Conclusions

Objectives

Base systems HACE Rebayct

Our

Document preprocessing Combining ensembles

Results

Conclusions

- Performance of our systems in BioASQ official runs was disappointing
 - average performance fell into the bottom third of the ranked list of participating systems
 - small performance improvements in results obtained by the HACE framework
 - relative great improvements in REBAYCT runs (mainly due to ensemble based strategies) but still not competitive
- Lemmatization and content-word filtering based on PoS produced minor improvements over stemming and stop-word removal
- Association measures on word bigrams were apparently able to catch useful multiword terms in the biomedical domain

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Objectives

- Base systems HACE Rebayct
- Our
- Document preprocessing Combining ensembles

Results

Conclusions

- Both ensemble based approach lead to performance improvements, but more work and tuning need to be done
- Our question from previous BioASQ conclusions remains unanswered ...

Does large training data sets make unnecessary to employ sophisticated machine learning approaches?

- training text contribution in REBAYCT classifications was more important than structural and descriptor label contributions
- guided top-down search in HACE employs a very simple kind of *k*-nn prefiltering
- tests with simple *k*-nn over our Lucene index were not so bad