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Proposed Approach

The goal of BioASQ Task 2a is to automatically assign MeSH
index headings to un-tagged MEDLINE abstracts.

I Approach the problem from a document clustering
perspective.

I Similar documents often share MeSH terms.
I Use Latent Semantic Analysis (LSA) to identify

semantically “similar” articles to an unlabeled (‘query’)
abstract.

I Use the human-assigned MeSH descriptors of the similar
abstracts to build a set of candidate descriptors.
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Choosing the Training Data Set

Due to the large amount of potential training data and the
changing nature of the MeSH tree, we chose to narrow our
selection of training data.

I Only articles included in the list of 1,993 journals which
BioASQ identified as having “small average annotation
periods”

I Only descriptors which appear in the 2014 edition of
MeSH.

I Trained on a subset of the provided Training Set v.2014b
restricted to articles from 2005 and later (≈ 1.5M
abstracts)

I When experimenting with metavariables, we used a
randomly assigned 90/10 learning/validation split.

I When classifying new articles we used a model based on
the entire training set.
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LSA: Motivation

I Using LSA, one may perform vector- space retrieval on a
low-rank approximation of a term-document matrix, in
which “related” words end up grouped together.

I The combination of dimensionality reduction and semantic
grouping seemed to make LSA a natural fit for the problem
of computing document similarity for automatic indexing.
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Latent Semantic Analysis

I LSA produces a matrix approximation using singular value
decomposition (SVD). SVD effectively “splits” a
term-document matrix X into three new matrices, U, S, and
V, which may be multiplied together in order to re-create
the original matrix (X = USV T ).

I

I The decomposition can be used to create lower
dimensional approximations of the original matrix.
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Training: Tokenization and Normalization

Simple tokenization was implemented with the Python Natural
Language Toolkit (NLTK) library.1

I Sentence tokenization via Punkt
I Word tokenization using standard NLTK word tokenizer.
I Removed members of the NLTK English stop word list.

1http://www.nltk.org/
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Training: Building the LSI Index

We created our LSI index using Gensim2

I Create a term-document matrix representation of our
training corpus.

I Transform the frequency counts into normalized Term
Frequency-Inverse Document Frequency (TF-IDF) scores.

I Create LSI index of our corpus with the first 200
eigenvalues of the decomposed matrix.

2http://radimrehurek.com/gensim/
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Create Query from Test Document

I Tokenization / stopword removal.
I Project the document into the lower dimensional space.
I Calculate cosine similarity against all of our training

documents.
I Candidate set is the MeSH terms of the 20 most similar

documents.
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Assigning Descriptors to Our New Document

We developed a simple scoring algorithm to rank the candidate
descriptors based on the following assumptions:

1. All else being equal, a MeSH term associated with a more
similar document should have a greater contribution to the
score than a heading from a less similar document.

2. Terms which appear more frequently in neighboring
documents are better candidates than those which only
occur a single time.

3. This second point is mediated by the fact that some MeSH
headings, such as the check tag “Human” are much more
frequent in the corpus than others, so neighbors sharing
one of these contributes less information than files sharing
a more obscure header.
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Assigning Descriptors Part 2
I For any MeSH header m in our set of candidates, we

define a weighted frequency f (m)

f (m) =
n∑

i=1

e(i) · si . (1)

Where:

e(i) =

{
1 if m ∈ Mi

0 otherwise .
(2)

I Inverse document frequency idf (m) over the training
corpus:

idf (m) = log(
N

1 + C
) (3)

I Final score is:

score(m) = f (m) · idf (m) (4)

I Lower threshold of 1.5, return the highest scored MeSH
descriptors (max 12).
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Results

Table : Flat Measures

Batch System Micro-P Micro-R Micro-F
3: Wk 4 Baseline 0.2466 0.2942 0.2683
3: Wk 4 mesh_lsi 0.2815 0.2370 0.2573
3: Wk 5 Baseline 0.2315 0.3088 0.2646
3: Wk 5 mesh_lsi 0.2688 0.2423 0.2549

3

Table : Hierarchical Measures (Lowest Common Ancestor)

Batch System LCA-P LCA-R LCA-F
3: Wk 4 Baseline 0.3271 0.3207 0.3107
3: Wk 4 mesh_lsi 0.3230 0.2699 0.2844
3: Wk 5 Baseline 0.3061 0.3345 0.3059
3: Wk 5 mesh_lsi 0.3177 0.2782 0.2874

3Baseline is the BioASQ baseline MTI and MTI First Line Index



Example

C-Reactive Protein Haplotype Predicts Serum C-Reactive
Protein Levels But Not Cardiovascular Disease Risk

in a Dialysis Cohort
Lin Zhang, MD, PhD, W.H. Linda Kao, PhD, MHS, Yvette Berthier-Schaad, PhD,

Laura Plantinga, ScM, Nancy Fink, MPH, Michael W. Smith, PhD, and Josef Coresh, MD, PhD

Background: C-Reactive protein (CRP) gene variation has been associated with serum CRP levels
in the general population. We examined the associations of CRP gene variation with longitudinal CRP
measurements and incident cardiovascular disease (CVD) risk in a cohort of 504 white and 244
African-American incident dialysis patients.

Methods: Seven tagging single-nucleotide polymorphisms in the CRP gene were selected by using
the Carlson method (r 2 ! 0.65). High-sensitivity CRP was measured every 6 months (mean, 4.6
months). Haplo.glm was used to determine the association of haplotypes with serum CRP levels and
CVD risk. Global tests from Haplo.score were conducted to determine statistical significance.

Results: Compared with the most common haplotype, 1 haplotype was associated with a 52% lower
CRP level at baseline among African Americans (ratio, 0.48; 95% confidence interval [CI], 0.28 to 0.82;
global P-value " 0.0005). Furthermore, this haplotype was associated significantly with lower serum
CRP levels during 36 months of follow-up. Among whites, this haplotype was associated with an 18%
(ratio, 0.82; 95% CI, 0.56 to 1.22; n " 6 carriers) lower CRP level compared with the most common
haplotype with a frequency of 1% (global P-value " 0.048). No association was detected between CRP
gene variation and CVD risk in either whites or African Americans.

Conclusion: Compared with the most common haplotype of the CRP gene, 1 haplotype predicts a
lower serum CRP level over time, but no association exists between haplotype of CRP gene and
incident CVD in this incident dialysis population. Serum CRP level might be a biomarker, rather than a
causal factor, in CVD development. CRP variation may lead to susceptibility to inflammation, but not risk
for CVD; however, replication in multiple settings is necessary.
Am J Kidney Dis 49:118-126. © 2006 by the National Kidney Foundation, Inc.

INDEX WORDS: C-Reactive protein (CRP) gene; serum C-reactive protein (CRP) level; haplotype;
cardiovascular disease (CVD); end-stage renal disease (ESRD).

E levated serum C-reactive protein (CRP) level
is associated significantly with risk for

cardiovascular disease (CVD) in the general
population1,2 and the dialysis population,3,4 who
are at high risk for inflammation and CVD.5-7

However, it is unclear whether the association

between CRP level and increased CVD risk is
due to reverse causality or residual confounding,
which would make CRP level a marker rather
than a causal risk factor, for increased CVD risk.
Genetic association studies may help address this
question.8 If high serum CRP levels were a
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Example, Part 2

Actual: C-Reactive Protein, Cardiovascular Diseases, Female,
Haplotypes, Humans, Male, Middle Aged, Renal Dialysis, Risk
Factors
Predicted: Aged, Ankle Brachial Index, Biological Markers,
C-Reactive Protein, Cardiovascular Diseases, Cohort Studies,
Cross-Sectional Studies, Female, Logistic Models, Middle
Aged, Predictive Value of Tests, Risk Factors



Example Part 3
For this example, 147 candidates terms were considered,
including all of the manually applied MeSH terms.

Table : Example Candidates and Scores for A Sample Abstract

MeSH Descriptor Score
C-Reactive Protein 9.008
Biological Markers 5.399
Risk Factors 4.959
Cross-Sectional Studies 4.539
Logistic Models 3.513
Cardiovascular Diseases 3.322
Predictive Value of Tests 3.267
Aged 3.265
Cohort Studies 3.117
Middle Aged 2.942
Ankle Brachial Index 2.814
Female 2.558
Venous Thromboembolism 2.447
Male 2.391
. . . . . .
Humans 1.382
. . . . . .
Renal Dialysis 0.878
. . . . . .
Haplotypes 0.8322
. . . . . .
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Summary

I Results are encouraging. Seems to be a viable approach
to applying semantic tags.

I There are a number of avenues that need to be explored
before this can move beyond ‘proof of concept’

I Future Work
I Possible special case handling of check tags such as

“Human”
I Improvements to the LSI

I Better stopwords: Consider ignoring numbers and section
headers.

I Better normalization: Stemming/Lemmatization. Acronym
normalization.

I Tune variables
I Number of LSI topics
I Number of similar documents considered.
I Modify or remove hard ceiling of 12 on number of assigned

MeSH terms.
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Questions?

adamjo@ohsu.edu
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